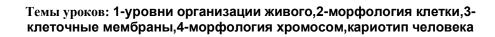


«УТВЕРЖДЕНО» Методическим советом УО колледж «Аяжан» Председатель методсовета Сембаева Б.Е. «\_\_\_\_»\_\_\_\_2021 г.

# Учебно-методический комплекс

Предмет / модуль: «Биология»


Тема Специальность :»Общеобразовательный курс»

0301000-«Лечебное дело», 0302000- «Сестринское дело і»,0307000 -

«Ортопедия, стоматология»

Мамандықтың коды және атауы

Біліктілігі: 0301013-«Фельдшер», 0302043-«Медсестра общей практики», «Зубтехник»





| Составлена на основании ГОСО 2019 г.                                                                     |  |
|----------------------------------------------------------------------------------------------------------|--|
| Разработаны преподавателем : _Орынбаевой Ш.Т                                                             |  |
| Рассмотрена на ЦМК "Общеобразовательных дисциплин" протокол № от "" 20г председатель ЦМК Турсунбаева Г.Ж |  |

КП Аяжан стр. 2 из 26



#### Введение

В учебно-методическом комплексе основное внимание уделяется практическим вопросам биологии и вирусологии. В ней отражены вопросы, связанные с морфологией и структурой живых организмов,

Биология — наука о живом. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения медицинской биологии являются живые организмы, их строение, функции, взаимоотношение между организмами, природные сообщества организмов. Человек представляет неотъемлемую часть живой природы, он входит в природные биоценозы, является важной составной частью различных наземных экосистем. Современный человек — носитель биологической и социальной форм движения материи, в нем сфокусирована вся высшая сложность строения и регуляции материальных явлений.

# Урок 1 УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО. ОПТИЧЕСКИЕ СИСТЕМЫ В БИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ

- **1.1.3НАЧЕНИЕ ТЕМЫ.** Медицинская биология как наука про основы жизнедеятельности человека, которая изучает закономерности наследственности, изменчивости, индивидуального и эволюционного развития и морфологической и социальной адаптации человека к условиям окружающей среды в связи с ее биосоциальной сутью.
- **1.2.ЦЕЛИ ЗАНЯТИЯ.** Общая: Современные этапы развития общей и медицинской биологии. Место биологии в системе медицинского образования.

Суть жизни. Формы жизни, ее фундаментальные особенности и атрибуты. Эволюционные изменения структурные уровни организации жизни; элементарные структурные уровни и основы биологического явления, которые их характеризуют. Значение явлений про уровни организации живого для медицины.

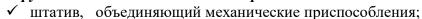
Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним. Техника изготовления временных микропрепаратов, изучение и описание.

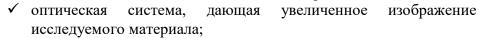
#### 1.3.КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ: Уметь

- 1.3.1. Охарактеризовать назначение основных частей микроскопа.
- 1.3.2. Работать с малым и большим увеличением микроскопа при изучении микропрепаратов.
- 1.3.3. Изготовить временный микропрепарат.

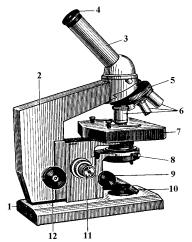
# **ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Методы микроскопирования**

Световая микроскопия. Микрокопирование — основной метод изучения препаратов — используется в биологии уже более 300 лет. С момента внедрения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой разнообразные сложные оптические системы, обладающие высокой разрешающей способностью. Они позволяют изучать очень тонкие детали строения клеток и тканей. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием  $(d_0)$ . В основном оно зависит от длины световой волны  $\lambda$ , и эта зависимость приближенно выражается формулой  $d_0 = \frac{1}{2}\lambda$ . Таким образом, чем меньше длина световой волны, тем меньше разрешаемое расстояние и тем меньшие по размерам структуры можно видеть в препарате.


Для изучения биологических препаратов чаще применяют различные световые микроскопы, в которых источником освещения является естественный или искусственный свет. Минимальная длина волны видимой части спектра света соответствует примерно 0,4 мкм. Следовательно, для обычного светового микроскопа разрешаемое расстояние равно приблизительно 0,2 мкм ( $d_0$  =


КП Аяжан стр. 3 из 26




 $\frac{1}{2}\lambda \times 0,4$  мкм = 0,2 мкм), а общее увеличение (произведение увеличения объектива на увеличение окуляра) достигает 2500 раз.

#### Конструктивные основные части микроскопа:





✓ осветительная система для направления световых лучей на рассматриваемый объект (рис. 1).



# Рис.1.Световой биологический микроскоп «Биолам-С»

1 — основание; 2 — тубусо-держатель; 3 — наклонный тубус; 4 — окуляр; 5 — револьвер; 6 — объективы; 7 — столик; 8 — конденсор с ирисовой диафрагмой; 9 — винт конденсора; 10 — зеркало; 11 — микрометрический винт; 12 — макрометрический винт.

**Штатив** состоит из подставки и тубусодержателя, подвижно соединенного с ней. Тубусодержатель несет цилиндрическую трубку — тубус, имеющую оптическую систему.

Для перемещения тубуса используется макрометрический винт, с помощью которого осуществляется предварительная фокусировка.

Точная наводка на фокус достигается вращением микрометрического винта. К штативу крепится предметный столик. На него помещается препарат.

Оптическая система представлена объективами и окулярами. Объективы ввинчиваются в подвижное плато — револьвер и обращены к рассматриваемым предметам. Окуляры вставляются в отверстие тубуса и направляются к глазу исследователя. Объектив дает истинное увеличение объекта, но обратное. Окуляр вторично увеличивает изображение, делает его мнимым, оставляя обратным. На объективы и окуляры нанесены цифры, характеризующие силу увеличения. Для практической работы студенты обычно используют объектив малого увеличения — 8, большого увеличения — 40, иммерсионный — 90, окуляры 7, 10, 15. Общее увеличение, даваемое микроскопом, равно произведению увеличения окуляра и объектива (например, – ок. 7 х об. 8 = ув. 56).

Для характеристики объектива существенное значение имеет его разрешающая способность. Она определяется наименьшим расстоянием между двумя точками, изображение которых наблюдается раздельно в данной оптической системе. При исследовании в проходящем свете при обычном освещении разрешающая способность микроскопа равна 0,2 мкм. В практической работе улучшить разрешающую способность можно, используя иммерсионное масло, которое вводится между исследуемым препаратом и специальным иммерсионным объективом. Показатель преломления иммерсионного масла в 1,5 раза выше показателя преломления воздуха, кроме того, он совпадает с показателем преломления объектива, что обусловливает более полное использование светосилы объектива.

Осветительная система состоит из подвижного зеркала (10), необходимого для направления световых лучей в сторону исследуемого предмета и конденсора — системы линз, которые собирают лучи от зеркала и концентрируют их на исследуемом объекте. Зеркало имеет две поверхности — плоскую и вогнутую. Для получения более интенсивного освещения при отсутствии конденсора пользуются вогнутой поверхностью зеркала. При работе с большими и особенно иммерсионными объективами применяют конденсор и плоское зеркало. Конденсор имеет ирисдиафрагму, регулирующую световой поток и кольцо светофильтра. Осветительный аппарат (конденсор, диафрагма, светофильтр) перемещается по вертикали вращением рукоятки конденсора.

Для научных исследований применяются более сложные конструкции микроскопов (например, Laboval 4, Olympus-IMT2), с помощью которых можно фотографировать биологический объект.

#### Правила работы с биологическим микроскопом

КП Аяжан стр. 4 из 26



- **1.** Микроскоп хранят в футляре для защиты от пыли, влаги и света. Перенося микроскоп без футляра, правой рукой берут его за ручку штатива, левой поддерживают снизу.
- **2.** Приступая к работе с микроскопом, окуляр, объектив и зеркало протирают мягкой тряпкой. То же делают после окончания работы. Если линза объектива загрязнилась, необходимо протереть ее смоченной в бензине тряпочкой и вытереть насухо.
  - 3. Начинают рассматривать препарат с малого увеличения (объектив 8х).
- **4.** Перед началом работы необходимо осветить поле зрения микроскопа, для чего смотрят в окуляр левым глазом, поворачивают зеркало в направлении светового потока, пока поле зрения не будет хорошо и равномерно освещено.
  - 5. Препарат помещают на предметный столик покровным стеклом кверху.
- **6.** Для установления препарата в фокусе пользуются макрометрическим винтом. Для этого, глядя сбоку, а не в окуляр, поворотами винта опускают объектив почти до самого препарата. Затем, глядя в окуляр, начинают вращать винт в обратном направлении, поднимая тубус, пока в поле зрения не появится четкое изображение предмета. Одновременно смотреть в окуляр и опускать тубус запрещается во избежание повреждения линзы объектива и препарата. Микрометрический винт можно поворачивать не более чем на пол-оборота в обоих направлениях. Объект изучения должен быть в центре поля зрения.
- **7.** Переходя с меньшего на большее увеличение, нужно поворотом револьвера поставить объектив большого увеличения (об. 40x) против нижнего отверстия тубуса, опустить объектив почти до самого препарата и лишь после этого смотреть в окуляр. Наводить на резкость надо только микровинтом.
- **8.** Работая с иммерсионным объективом (об.90х), на предметное стекло наносят каплю масла, на которое опускают объектив иммерсии. Масло создает однородную среду для преломления световых лучей и значительно улучшает освещение объекта, что весьма необходимо при работе на большом увеличении.
  - 9. Никогда не следует развинчивать окуляр и объектив.

**Методика изготовления препаратов**. Для изучения объектов изготовляют временные или постоянные микропрепараты, для чего необходимы предметные и покровные стекла и объект исследования.

Предметное стекло представляет собой пластинку размером 76х40 мм, толщиной до 3 мм, а покровное — прямоугольную пластинку (24х24 или 18х18 мм), толщиной 0,15...0,2 мм.

**Для изготовления временного микропрепарата** объект помещают на предметное стекло в каплю воды и накрывают покровным стеклом. Чтобы не появились воздушные камеры, необходимо дотронуться до края капли одной из сторон покровного стекла и постепенно опускать его до горизонтального положения.

Воды берут столько, чтобы заполнить щель между предметным и покровным стеклами. Если жидкости много и она выступает за границы покровного стекла, ее убирают фильтровальной бумагой. Если же воды мало, ее вводят под покровное стекло пинцетом или стеклянной палочкой.

### 1.4.ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ СТУДЕНТОВ

Медицинская биология как наука про основы жизнедеятельности человека, которая изучает закономерности наследственности и изменчивости, индивидуального и эволюционного развития морфологической и социальной адаптации человека к условиям окружающей среды в связи с биосоциальной сутью.

Современные этапы развития медицинской биологии. Место биологии в системе медицинского образования.

Суть жизни. Формы жизни, ее фундаментальные свойства и атрибуты. Эволюционно организованы структурные уровни жизни; элементарные структуры уровней и основы биологических явлений, которые их характеризуют. Значение явлений про уровни организации живого для медицины.

КП Аяжан стр. 5 из 26



Особое место человека в системе органического света. Отношение физико-химических, биологических и социальных явлений жизнедеятельности человека.

Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним. Техника изготовления временных микропрепаратов, изучение и описание.

#### 1.5. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

# 1.4.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ, КОТОРЫЕ НЕОБХОДИМО УСВОИТЬ ДЛЯ ДОСТИЖЕНИЯ ЦЕЛЕЙ ЗАНЯТИЯ.

- а) виды микроскопов;
- б) устройство микроскопа;
- в.) правила работы с микроскопом;
- г) этапы изготовления временного микропрепарата.

#### 1.4.2. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ.

- а) установить микроскоп в рабочее положение; определить общее увеличение микроскопа при «малом» и «большом» увеличении;
- б) рассмотреть под малым увеличением микроскопа асимметричную букву шрифта: сделать заключение о том, какое изображение дает световой микроскоп;
- в) рассмотреть микропрепарат «Волос человека» под «малым» и «большим» увеличением и зарисовать:
- г) изготовить временный препарат из волокон ваты, рассмотреть под микроскопом и зарисовать; на рисунке отметить артефакты в виде соринок и пузырьков воздуха.

#### 1.4.3. РЕШЕНИЕ ЦЕЛЕВЫХ ОБУЧАЮЩИХ ЗАДАЧ

- ЗАДАЧА 1. При работе с микроскопом обнаружено, что все поле зрения затемнено. Какова причина затемнения ? Как ее устранить ?
  - ЗАДАЧА 2. Имеется мутное изображение объекта наблюдения. Как устранить этот дефект?
- ЗАДАЧА 3. При микроскопировании микропрепарат виден на «малом» увеличении, но не виден при «большом» увеличении. Какова причина этого? Как устранить возникший дефект?
- ЗАДАЧА 4. При микроскопировании обнаружено, что часть поля зрения освещена ярко, а часть затемнена. Какова причина? Как устранить обнаруженный дефект?
- **1.5. ПОДВЕДЕНИЕ ИТОГОВ ЗАНЯТИЯ** преподавателем и проверка правильности выполнения работ каждым студентом.
  - 1.5.МЕСТО И ВРЕМЯ ЗАНЯТИЯ: кабинет биологии 11, 90мин
  - 1.6. ОСНАЩЕНИЕ ЗАНЯТИЯ: микроскопы, микропрепараты, таблицы, схемы.

ЛИТЕРАТУРА: основная (1), дополнительная (2).

- 1.1. В.П. Пишак Биология медицинская Винница 2004
- 1.2. Королев В.А.; Кривошеина Г.Н.; Полякова Э. Г. Руководство к лабораторным занятиям по биологии. Киев: Вища школа, 1986.
  - 2.1. Лазарев К. Л. Клетка и биология развития. Симферополь, 2000.

КП Аяжан стр. 6 из 26



#### Урок 2

### МОРФОЛОГИЯ КЛЕТКИ. СТРУКТУРНЫЕ КОМПОНЕНТЫ ЦИТОПЛАЗМЫ и ЯДРА

**1.1.3НАЧЕНИЕ ТЕМЫ.** Цитоплазма и цитоскелет. Циклоз. Органеллы цитоплазмы — мембраны и мембранные назначения и принципы функционирования. Включения в клетках и их функции.

Ядро — центральный информативный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации материала. Хроматин : эухроматин и гетерохроматин. Методы изучения структуры и функционирования клетки.

**1.2.ЦЕЛИ ЗАНЯТИЯ. Общая:** Структурно- функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода, значение связей в процессах жизнедеятельности клетки. Органические структуры — углевместимость вещей живых организмов.

#### 1.3. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ:

- 1.3.1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.
- 1.3.2. Получить представление о субмикроскопическом строении клеточных структур.

# ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В настоящее время на планете Земля есть две основные формы жизни: неклеточная и клеточная.

**Неклеточная форма жизни -** это вирусы. Их объединяют в самостоятельную систематическую категорию Царство вирусы.

**Клеточная форма жизни** представлена огромным разнообразием клеток, которые существуют в виде самостоятельных одноклеточных организмов или входит в состав многоклеточных живых существ. Клеточная форма жизни существует в виде безъядерных структур (прокариот) и ядерных структур (эукариот). Различия между ними представлены в таблице.

Детальное изучение клеточных структур и их взаимодействия привело в середине нашего века к формированию представлений о **клеточном уровне организации.** Возникновение клетки сыграло решающую роль для прогресса жизни на нашей планете.

За последние 150 лет представления о клетке существенно изменились и расширились. Однако суть клеточной теории осталась неизменной.

#### Основные положения клеточной теории.

- 1. Клетка элементарная структурно-функциональная единица живой материи.
- 2. Клетки различных организмов сохраняют одинаковый принцип строения.
- 3. Размножение клеток происходит путем деления исходной материнской клетки.

#### Различия между прокариотическими и эукариотическими клетками

| $N_0N_0$  | Основные  | Прокариоты          | Эукариоты       |
|-----------|-----------|---------------------|-----------------|
| $\Pi/\Pi$ | параметр  |                     |                 |
|           | Ы         |                     |                 |
| 1         | Размеры   | В среднем 0,5-5,0   | В среднем 40-60 |
|           |           | мкм.                | MKM.            |
|           |           | Круглые, вытянутые, | Разнообразная,  |
| 2         | Форма     | нитчатые.           | могут иметь     |
|           |           |                     | отростки.       |
|           |           | .Нуклеоид.          | Линейная ДНК,   |
| 3         | Генетичес | Кольцевая ДНК в     | связанная с     |

КП Аяжан стр. 7 из 26



|   |          | T                   | T                   |
|---|----------|---------------------|---------------------|
|   | кий      | цитоплазме. Нет     | белками и РНК.      |
|   | материал | ядра и хромосом.    | Хроматин и          |
|   |          |                     | хромосомы в ядре.   |
|   |          | 70S – рибосомы и    | 80S – рибосомы и    |
| 4 | Синтез   | мельче. ЭП          | крупнее. Рибосомы   |
|   | белка    | ретикулума нет.     | в цитоплазме и в    |
|   |          | Рибосомы - в        | ЭП ретикулуме.      |
|   |          | цитоплазме.         |                     |
|   |          | Органелл мало и они | Органелл много,     |
| 5 | Органелл | не имеют мембран    | есть мембранные     |
|   | ы        | (рибосомы).         | (митохондрии,       |
|   |          |                     | пластиды,           |
|   |          |                     | лизосомы).          |
|   |          |                     | Жесткие стенки у    |
|   |          |                     | клеток растений и   |
|   |          | Жесткие, состоят из | грибов (компонент   |
| 6 | Клеточны | полисахаридов.      | прочности –         |
|   | е стенки | Компонент           | целлюлоза). Клетки  |
|   |          | прочности – муреин. | животных имеют      |
|   |          |                     | плазмалемму         |
|   |          |                     | покрытую            |
|   |          |                     | гликокаликсом.      |
|   |          | Хлоропласты         | Хлоропласты есть в  |
|   |          | отсутствуют.        | растительных        |
| 7 | Фотосинт | Происходит в        | клетках. В них идут |
|   | ез       | мембранах,не        | процессы            |
|   |          | имеющих             | фотосинтеза.        |
|   |          | специфической       | -                   |
|   |          | упаковки.           |                     |
| 8 | Фиксация | Некоторые клетки    | Клетки не           |
|   | азота    | фиксируют.          | способны к          |
|   |          |                     | фиксации.           |
| 9 | Деление  | Простое (прямое)    | Митоз (непрямое).   |



Основными структурными компонентами эукариотических клеток являются клеточные мембраны, ядро, цитоплазма с цитоскелетом, органеллы включения (рис. 2).

1. Клеточная мембрана или плазмалемма, представляет биологическую тонкую пленку, которая ограничивает клетку.

микроскопии: плазматический матрикс; 2— комплекс Гольджи; 3— клеточный центр; 4 — эндоглазматиу кариоплазма; 9 хроматин; 10 – лизосома; 11 –экэгри вонз 26через цитоплазматическую мембрану, 12 – микроворсинки



Все известные биологические мембраны образуют замкнутые пространства - *компартменты*. Таким образом, главная функция клеточной мембраны - обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.

Основу плазмалеммы составляет *двойной слой липидов*, расположенных перпендикулярно поверхности (рис. 3). Липидный бислой плазмалеммы содержит белки, которые подразделяются на два класса. Первый класс - *трансмембранные белки*. Определенная часть их молекулы встроена в двойной липидный слой и пронизывает его насквозь. Второй класс – *периферические белки-рецепторы*, расположенные снаружи клеточной мембраны. Они покрыты слоем углеводов, образующих тонкое покрытие клетки – *гликокаликс*.

Мембранный транспорт различных оформленных частиц в клетке происходит путем эндоцитоза и экзоцитоза.

При эндоцитозе клетки поглощают макромолекулы и частицы, окружая их небольшим участком клеточной мембраны. Последняя впячивается внутрь клетки, образуя везикулы (пузырьки). Если везикулы мелкие и содержат внеклеточную жидкость, процесс называется пиноцитоз.

Если же они содержат крупные оформленные частицы, то формируются фагосомы, а явление известно, как **фагоцитоз**.

**Экзоцитоз** - это гранул секрета или жидкостью.

2.Ядро-которымсвязаноинформации,обменразмножение.

Форма ядра чаще дольчатая. От ядерная оболочка. Она внутренней ядерных бесструктурным

ЧКа. Она Рис. 3. Химическая медель плазмалеммы:
1 - двойной слой липидов; 2 - трансмембранные
ЯДерных белки; 3, 4 - периферические белки; 5 —
полисахариды гликокаликса.

выход веществ из клетки в виде вакуолей с клеточной

центральный аппарат клетки, с хранение и передача генетической веществ, движение и

округлая или вытянутая, реже цитоплазмы его отделяет состоит из наружной и мембран, разделенных веществом. Мембраны имеют

многочисленные поры, обеспечивающие избирательную связь с цитоплазмой. Каждая пора встроена в крупную дисковидную структуру, называемую *поровый комплекс ядерной оболочки*. Заполнено ядро гомогенной массой - нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.

Комплекс ядерной ДНК со структурными белками гистонами и негистоновыми белками, содержащимися в больших количествах, называют хроматином. На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. В период деления клетки в ядре выявляются митотические хромосомы. Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функцией.

Важным компонентом ядра является одно или несколько *ядрышек*. Это мелкие круглые тельца с высоким содержанием РНК и белка. Ядрышковая РНК участвует в регуляции синтетических процессов в цитоплазме клетки.

**3. Цитоплазма** объединяет все живое вещество клетки, за исключением ядра и ограничивающих клетку мембран. *Гомогенная бесструктурная масса цитоплазмы получила название гиалоплазмы*. В ней во взвешенном состоянии находятся *органеллы и включения*. Агрегатное состояние цитоплазмы бывает жидкое - золь и вязкое - гель. Основу цитоплазмы формирует цитоскелет клетки.

**Цитоскелет** - сложная сеть микротрубочек и белковых филаментов (нитей). Микротрубочки играют роль направляющих. Это своеобразные рельсы, по которым передвигаются органеллы. Филаменты выполняют сократительную функцию.

КП Аяжан стр. 9 из 26



Цитоплазма и некоторые структуры, расположенные в ней, могут перемещаться. Данное явление известно как *ток цитоплазмы*. Он особенно интенсивен в растительных клетках по причине их крупных размеров и жесткости стенок.

- 4. **Органеллы и включения** находятся в цитоплазме. *Органеллы это постоянные высокодифференцированные внутриклеточные образования, выполняющие определенные функции*. Внутреннее пространство любой внутриклеточной органеллы, ее компартмент, ограничено специализированными мембранами. Выделяют две большие группы органелл.
  - 1. Органеллы общего значения обязательны для жизнедеятельности всех клеток.
- **2. Специальные органеллы** выполняют направленные функции в клетках с узкой специализацией (реснички и жгутики, миофибриллы и нейрофибриллы).

По принципу организации внутриклеточные компоненты подразделяются на одномембранные и двумембранные.

**Одномембранные** компоненты имеют вид каналов, цистерн, пузырьков ограниченных одной мембраной и тесно взаимосвязанных. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.

**Двумембранные компоненты** - это митохондрии и пластиды. Наружная мембрана их всегда гладкая, внутренняя образует выросты, имеющие важное функциональное значение. Систему двойных мембран имеет также ядро - центральный аппарат клетки. Ядерные мембраны содержат поры.

**Немембранные структуры** клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра; в) органеллы движения клеток — жгутики, реснички и миофибриллы; г) разнообразные клеточные включения.

#### ОРГАНЕЛЛЫ ОБЩЕГО ЗНАЧЕНИЯ

**Эндоплазматический ретикулум (ЭР)** - разветвленная внутриклеточная структура, представленная системой субмикроскопических канальцев с расширениями - цистернами... Существует два типа ЭР.

*Гранулярный ЭР*, мембраны которого содержат рибосомы (рис. 4).

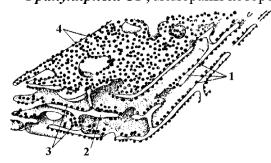



Рис. 4. Эндоплазматическая сеть и рибосомы (схема):
1 — мембраны; 2 — каналы эндоплазматической сети; 3 — матрикс; 4 — рибосомы.

**Рибосомы** - это ультрамикроскопические сферические гранулы, состоящие из двух половинок - большой и малой субъединиц, а также рибосомальной РНК.

Главное назначение их - участие в синтезе белка.

*Гладкий ЭР* несет мембраны, лишенные рибосом. Здесь происходит синтез липидов и углеводов. ЭР объединен с

дыхательные

ядром клетки, поскольку наружная мембрана ядра непосредственно переходит в мембраны ЭР. Гладкий и гранулярный ЭР связаны друг с другом, но отличаются по составу содержащихся в них белков.

# Митохондрии.

микроскопия, внутреннюю

Наружная цаемое для мембрана образует в виде гребней, полость, называемую наружной и

#### Рис 6. Схема комплекса Гольджи:

1 — формирующий полюс диктиосомы, 2 — секретирующий полюс диктиосомы, 3 — мешочки-

Внутренняя меморана Криста Рибосомы Криста З

Как показала электронная митохондрии имеют наружную и мембрану (рис. 5).

мембрана напоминает сито, пронинебольших белков. Внутренняя многочисленные складки - кристы, вдающихся во внутреннюю матрикс. Промежуток между внутренней мембраной называют межмембранным пространством. На кристах содержатся

ферменты,



необходимые для окислительного фосфорилирования. Результатом его является образование АТФ и выделение большого количества энергии, необходимой для жизнедеятельности клеток. Митохондрии содержат цитоплазматическую ДНК, отличную от ДНК ядра.

**Комплекс Гольджи.** По данным электронной микроскопии он состоит из **диктиосом.** Каждая диктиосома представляет стопку плоских мешочков-цистерн (рис. 6). Число цистерн в одной диктиосоме 5 - 7. От краев цистерн отделяются микропузырьки.

Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов синтезируемых эндоплазматическим ретикулумом и в образовании лизосом.

**Лизосомы.** Лизосомы представляют сферические частицы размерами 0,5 - 2,0 мкм. Они имеют плотную липопротеиновую мембрану. Содержат большой набор гидролитических ферментов. Они необходимы для процессов внутриклеточного пищеварения.

Другой важной функцией лизосом является *автолиз* - посмертное растворение структурных компонентов клетки под действием ферментов лизосом.

**Центросома.** Типичная центросома представлена двумя центриолями Они соединенны перемычкой центродесмозой и окружены «лучистой» сферой - астросферой. При электронной микроскопии центриоли имеют вид цилиндра, стенки каждого образованы микротрубочками, собранными попарно. Центросома обеспечивает процесс митоза, формируя митотический аппарат клетки.

*Пластиды* — органеллы свойственные автотрофным клеткам, способных к синтезу органических соединений. Пластиды отличаются по окраске:

- 1) бесцветные лейкопласты,
- 2) окрашенные в зеленый цвет хлоропласты,
- 3) различные желто-красные оттенки хромопласты.

Все пластиды имеют мембранный принцип строения. Наиболее сложно организованы хлоропласты, содержащие зеленый пигмент хлорофилл, необходимый для фотосинтеза. Тело хлоропласта состоит из белков и липидов. Внутренняя мембрана хлоропласта ограничивает большую центральную область называемую строма. Она пронизана системой параллельных дисковидных мешочков, возникших в результате впячивания внутренней мембраны. Это тилакоиды, содержащие фотосинтезирующую систему поглощения света и цепь транспорта электронов. В строме также находятся рибосомы, крахмальные зерна и цитоплазматическая ДНК.

#### ОРГАНЕЛЛЫ СПЕЦИАЛЬНОГО ЗНАЧЕНИЯ

**Реснички и жсутики** встречаются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Они связаны с элементами движения, которые характерны определенным видам клеток.

Миофибриллы имеются в мышечных клетках и обеспечивают сокращение мыщц.

**Нейрофибриллы** - являются обязательным компонентом многих нервных клеток и их отростков. Участвуют в передаче возбуждения.

**Включения** - непостоянные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки.

В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные,

*Трофические включения* отражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира.

Секреторные включения характерны, в основном, для железистых клеток.

*Специальные включения* присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов - особых клеток с защитной функцией.

#### 1.4. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

1.4.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ, КОТОРЫЕ НЕОБХОДИМО УСВОИТЬ ДЛЯ ДОСТИЖЕНИЯ ЦЕЛЕЙ ЗАНЯТИЯ

КП Аяжан стр. 11 из 26



- а) типы и виды клеток;
- б) организация и функция клеточной мембраны и цитоплазмы;
- в) строение и функция клеточного ядра;
- г) строение и функция органоидов клетки.

# 1.4.2. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ СТУДЕНТОВ

Структурно — функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода значение водных связей в процессах жизнедеятельности клетки. Органические связи — углевместимость вещей живых организмов. Цитоплазма и цитоскелет , Циклоз. Органеллы цитоплазмы мембранные и немембранные, назначение и принципы функционирования. Включения в клетках их функции.

Ядро — центральный информационный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации наследственного материала. Хроматин: еухроматин, гетерохроматин. Методы изучения структуры и функционирования клеток.

#### 1.4.3. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ПО ТЕСТАМ

## 1. Элементарной структурной единицей живой материи является:

- а) ткань, б) углеводы, в) орган, г) нуклеиновые кислоты, д) клетка.
- 2. Органические вещества, выполняющие в клетке функции ферментов:
- а) белки, б) углеводы, в) жиры, г) нуклеиновые кислоты, д) фосфолипиды.
- 3. Непрерывность жизни обеспечивается благодаря функции клетки:
- а) обмен веществ и энергии, б) возбудимость, в) рост и размножение клеток, г) биосинтез органических соединений, д) биосинтез белков.
  - 4. Выбрать органоиды клетки, в которых происходит образование энергии:
  - а) клеточный центр, б) лизосомы, в) рибосомы, г) хлоропласты, д) митохондрии).
  - 5. К прокариотам относятся:
  - а) гаметы, б) фаги, в) вирусы, г) сине-зеленые водоросли, д) бактерии.
  - 6. В каких органоидах содержится ДНК:
  - а) лизосомах, б) рибосомах, в) клеточном центре, г) митохондриях, д) комплексе Гольджи?
  - 7. Органические вещества из неорганических образуются в процессе:
  - а) синтеза АТФ, б) синтеза белков, в) фотосинтеза, г) транскрипции, д) трансляции.
- 8. В клетках человека при физической нагрузке резко усиливается процесс синтеза АТФ, который происходит в:
- а) рибосомах; б) лизосомах; в) комплексе Гольджи; г) блефаропласте; д) митохондриях.
- 9. Наружная мембрана клетки имеет множество микроворсинок. При их повреждении будет нарушена функция:
- а) пиноцитоз; б) фагоцитоз; в) проведение нервного импульса; г) защитная; д) всасывание.
- 10. Какие из органелл клетки включены в работу на завершающем этапе, связанном с формированием капель секрета?
- а) свободные рибосомы цитоплазмы; б) лизосомы; в) гранулярная эндоплазматическая сеть; г) пластинчатый комплекс Гольджи; д) гладкая эндоплазматическая сеть.

|                              | Карточка 1                |
|------------------------------|---------------------------|
| 1. При биохимческом          | 2. У человека в клетках   |
| анализе клеток человека была | кишечного эпителия        |
| получена ДНК, отличающаяся   | происходит синтез         |
| по составу от хромомсомной   | видоспецифичных жиров и   |
| ДНК. Эта нуклеиновая кислота | липидов. Этот процесс     |
| была получена из:            | происходит в:             |
| А. Рибосом;                  | А. Митохондриях           |
| В. Пластинчатого комплекса;  | В. Пластинчатом комплексе |
| С. Гладкой                   | Гольджи                   |
| эндоплазматической сети      | С. Лизосомах              |
| Д. Митохондрий;              | Д. Гладкой                |

КП Аяжан стр. 12 из 26



| Е. Лизосом. | эндоплазматической сети |             |
|-------------|-------------------------|-------------|
|             | E.                      | Гранулярной |
|             | эндоплазматич           | еской сети. |

#### 1.4.3. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

- 1. Рассмотреть под микроскопом и зарисовать:
- а) микропрепарат «Пленка кожицы лука»,
- б) микропрепарат «Эритроциты лягушки»,
- в) микропрепарат «Эритроциты человека».
- 2. Изготовить и изучить временные микропрепараты живой растительной клетки из мякоти помидора и кожицы листа.
  - 3. Зарисовать схему строения клетки, отметить детали строения клетки.

#### 1.4.4. ПРОВЕДЕНИЕ ЗАКЛЮЧИТЕЛЬНОГО ТЕСТОВОГО КОНТРОЛЯ

- 1. Укажите основные компоненты прокариотической клетки:
- а) ядро, б) нуклеоид, в) клеточная стенка, г) цитоплазма, д) митохондрии.
- 2. К прокариотам относятся:
- а) вирусы, б) сине-зеленые водоросли, в) бактерии, г) грибы, д) бактериофаги.
- 3. Выделите основные компоненты эукариотической клетки:
- а) ядро, б) пластиды, в) цитоплазма, г) нуклеоид, д) цитоплазматическая мембрана, е) вакуоли.
- 4. Каков химический состав цитоплазматической мембраны:
- а) два слоя углеводов между двумя слоями белка, б) один слой липидов между двумя слоями белка, в) один слой углеводов и два слоя липидов, г) два слоя углеводов и один слой липидов, д) один слой углеводов и два слоя белков?
  - 5. Самый крупный органоид в клетке это:
  - а) митохондрии, б) рибосомы, в) микротрубочки, г) лиэосомы, д) клеточный центр?
  - 6. Какие основные компоненты ядра клетки:
  - а) ядерная оболочка, б) ядрышко, в) нуклеоплазма, г) центриоль, д) хроматин?
  - 7. Синтез белков происходит в:
  - а) ядре, б) митохондриях, в) рибосомах, г) лизосомах, д) клеточном центре?
- 8. При повреждении какого органоида нарушается окисление и освобождение энергии в клетке:
  - а) аппарат Гольжи, б) митохондрия, в) рибосома, г) лизосома, д) клеточный центр?
  - 9. Какой органоид отсутствует в клетке человека, но содержится в клетках зеленых растений:
  - а) митохондрии, б) рибосомы, в) хлоропласты, г) хромосомы, д) клеточный центр?
  - 10. Что такое фагоцитоз:
- а) поглощение клеткой жидкого материала, б) поглощение клеткой твердых частиц, в) поглощение минеральных веществ, г) поглощение воды ?
  - 11.Клеточный центр состоит:
- а) из двух центриолей, б) из двух ядрышек, в) из вакуолей различной величины, г) из двух хромосом, д) из одного ядрышка и двух хромосом?
  - 12. Основной функцией лизосом является:
- а) участие в пластическом обмене, б) участие в синтезе углеводов, в) участие в переваривании различных веществ, г) участие в синтезе липидов, д) участие в обмене веществ?
  - 13. Больше всего митохондрий содержится:
- а) в клетках, где активно протекают синтетические процессы, б) в эритроцитах, в) в клетках, где велики затраты энергии, г) в клетках, где синтезируются липиды, д) в клетках, где синтезируются углеводы?

КП Аяжан стр. 13 из 26



Карточка 2

- Клетку 1. лабораторного животного подвергли избыточному рентгеновскому облучению. результате образовались белковые фрагменты цитоплазме. Какой органоид клетки примет участие в их утилизации?
- А. Комплекс Гольджи.
- В. Рибосомы.
- C. Эндоплазматический ретикулум.
- Д. Лизосомы.
- Е. Центросомы

- 2.. В клетку путем фагоцитоза поступили высокомолекулярные белки соединения углеводы. Клетка собственные синтезировала соединения протеогликаны и выделила В оформленных капель секрета. Какие из органелл клетки включены работу на завершающем этапе. связанном с формированием капель секрета? А. Гладкая эндоплазматическая
- сеть.
- В. Лизосомы.

опухоль

- С. Гранулярная ЭПС
- Л. Свободные рибосомы питоплазмы.
- E. Пластинчатый комплекс Гольджи.

4. Женщине 67 лет удалена

матки.

митозы.

связано

- 3. Как называется процесс синтеза ATΦ, идущий реакциями сопряженно c окисления при участии ферментов системы митохондрий?
- А.Восстановительное фосфорилирование
- В. Свободное окисление С.Окислительное
- фосфорилирование **D**.Фотосинтетическое
- фосфорилирование

В. Рибосомы

- E. Субстратное фосфорилирование
- гистологическом исследовании в опухолевых клетках найдены многополюсные нарушением состояния каких органелл клетки проявления многополюсных митозов? А. Вторичных лизосом.

  - Гладкой эндоплазматической сетки
  - С. Гранулярной ЭПС
  - Д. Пероксисом.
  - Е. Центриолей.
- 5. После удаления зуба у пациента образовалась раневая поверхность, где произошла регенерация. активная Определите, какие из органелл обеспечили регенерацию тканей. А. Лизосомы
- 6. В клетках курящего человека произошло разрушение комплекса Гольджи. После этого нарушилась функция:
- А. Биосинтез белка
- В. Сокращение мышечных волокон

КП Аяжан стр. 14 из 26



| С. Пероксисомы              | С. Накопление различных      |  |
|-----------------------------|------------------------------|--|
| D. Митохондрии.             | веществ                      |  |
| Е. Центросомы               | D. Формирование рибосом      |  |
|                             | Е. Процесс деления клетки.   |  |
| 7. При исследовании         | 8. В растущих тканях         |  |
| некоторых органоидов клетки | организма человека           |  |
| в них обнаружены            | непрерывно синтезируются     |  |
| собственные нуклеиновые     | специфичные клеточные        |  |
| кислоты, содержащие урацил. | белки. Этот процесс происхо- |  |
| Это органоиды:              | дит благодаря работе:        |  |
| А Клеточный центр;          | А. Лизосом                   |  |
| В. Пластинчатый комплекс    | В. Рибосом;                  |  |
| С. Хромосомы;               | С. Клеточного центра;        |  |
| D. Микротрубочки            | Д. Гладкой ЭПС;              |  |
| Е. Рибосомы                 | Е. Ядрышка.                  |  |

**1.5. ПОДВЕДЕНИЕ ИТОГОВ ЗАНЯТИЯ** преподавателем и проверка правильности выполнения работы каждым студентом.

#### ЛИТЕРАТУРА: основная (1) и дополнительная (2).

- 1.1. В.П. Пишак Биология медицинская Винница 2004
- 1.2. Слюсарев А.А., Жукова С.В. Биология. М.: Медицина, 1987.
- 1.3. Биология /Под ред. Ярыгина В.Н. М.: Медицина, 1984.
- 1.4. Королев В.А. с соавт. Руководство к лабораторным занятиям по биологии. Киев: Вища школа, 1986.
  - 1.5. Королев В.А. Лекции по медицинской биологии. Киев: Вища школа, 1993.
  - 2.1. Королев В.А., Ромашова М.Ф. Биология живой клетки. Симферополь, 1999.
  - 2.2. Лазарев К. Л. Клетка и биология развития. Симферополь, 2000.
- 2.3. Лазарев К.Л., Демиденко Л.А. Медико-биологический словарь-спра-вочник Сиферополь: Ната, 2003.

#### Урок 3

#### КЛЕТОЧНЫЕ МЕМБРАНЫ. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ ПЛАЗМОЛЕМУ

- **1.1.3НАЧЕНИЕ ТЕМЫ.** Изучение микроскопического строения клеточных мембран позволяет глубже понять причины возникновения болезненного процесса, способствует внедрению в практику новых методов диагностики и лечения.
- **1.2.1.2. ЦЕЛИ ЗАНЯТИЯ. Общая:** Получить представление о структуре и функции клеточных мембрат и о процессах трансмембранного переноса веществ.

### 1.3.1.3. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ:

- 1.3.1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.
- 1.3.2. Получить представление о строении клеточных мембран.

#### ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

#### Клеточная мембрана

КП Аяжан стр. 15 из 26



Клетка со всех сторон окрухена плотно прилегающей мембраной, которая приспосабливается к любому изменению её формы с кажущейся лёгкой пластичностью. Эта мембрана называется плазматической мембраной, или плазмалеммой (греч. plasma - форма; lemma - оболочка).

**Клеточная мембрана или плазмолема,** представляет тонкую биологическую пленку, которая ограничивает клетку. Все известные биологические мембраны образуют замкнутые пространства – компартменты. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточной.

Все клетки отделены от окружающей среды плазматической мембраной. Клеточные мембраны не являются непроницаемыми барьерами. Клетки способны регулировать количество и тип проходящих через мембраны веществ, а часто и направление движения.

# Общая характеристика клеточных мембран:

- 1. Разные типы мембран различаются по своей толщине, но в большинстве случаев толщина мембран составляет 5 10 нм; например, толщина плазматической мембраны равна 7,5 нм.
- 2. Мембраны это липопротеиновые структуры (липид + белок). К некоторым липидным и белковым молекулам на внешних поверхностях присоединены углеводные компоненты (гликозильные группы). Обычно на долю углевода в мембране приходится от 2 до 10%.
- 3. Липиды образуют бислой. Это объясняется тем, что их молекулы имеют полярные головы и неполярные хвосты.
- 4. Мембранные белки выполняют различные функции: транспорт веществ, ферментативная активность, перенос электронов, преобразование энергии, рецепторная активность.
- 5. На поверхностях гликопротеинов находятся гликозильные группы разветвлённые олигосахаридные цепи, напоминающие антенны. Эти гликозильные группы связаны с механизмом распознавания.
- 6. Две стороны мембраны могут отличаться одна от другой и по составу, и по свойствам.

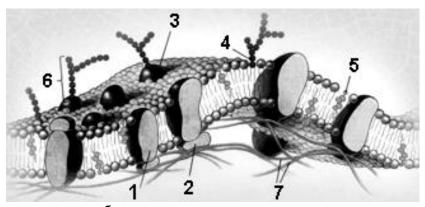



Рис 7. В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная в 1972 году Сингером и Николсоном (Singer, Nicolson). Согласно этой модели мембрана состоит из бислоя липидов, в котором плавают (или закреплены) белковые молекулы, образуя в нём своеобразную мозаику. Мембранные белки могут пронизывать бислой насквозь (интегральный белок - 1), примыкать к бислою (периферический белок - 2) или белки мембраны являются гликопротеинами (3), погружаться В него. Многие мембранообразующие липиды - гликолипидами (4). на схеме также показаны: холестерол (5); углевод (6);элементы цитоскелета (7).

#### Функции клеточных мембран:

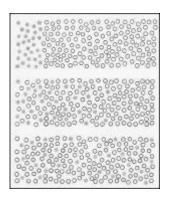
- ограничение клеточного содержимого от окружающей среды
- регуляция обменных процессов на границе "клетка окружающая среда"
- передача гормональных и внешних сигналов, контролирующих рост и дифференцировку клеток

КП Аяжан стр. 16 из 26



• участие в процессе клеточного деления.

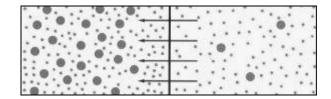
#### Типы проникновения веществ в клетку через мембраны


Транспорт через мембраны жизненно важен, т.к. он обеспечивает:

- соответствующее значение рН и концентрации ионов
- доставку питательных веществ
- выведение токсичных отходов
- секрецию различных полезных веществ
- создание ионных градиентов, необходимых для нервной и мышечной активности.

Регуляция обмена веществ через мембраны зависит от физических и химических свойств мембран и идущих через них ионов или молекул. Вода - основное вещество, поступающее в клетки и выходящее из них. Движение воды как в живых системах, так и в неживой природе подчиняется законам объёмного потока и диффузии. Объёмный поток - это общее движение воды (или другой жидкости), которое происходит благодаря разнице в потенциальной энергии воды, обычно называемой водным потенциалом.

Другой источник водного потенциала - давление. Вода перемещается из области более высокого водного потенциала в область более низкого независимо от причины, создающей это различие. Например, вода, находящаяся на вершине водопада, обладает потенциальной энергией. При падении воды, её потенциальная энергия переходит в кинетическую, которая может быть превращена в механическую и способна совершить работу.


**Диффузия** - это распространение вещества в результате движения их ионов или молекул, которые стремятся выровнять свою концентрацию в системе.



Признаки диффузии: каждая молекула движется независимо от других; эти движения хаотичны. Диффузия - процесс медленный. Но она может быть ускорена в результате тока плазмы, метаболической активности. Обычно вещества синтезируются в одном участке клетки, а потребляются в другом. Т. о. устанавливается концентрационный градиент, и вещества могут диффундировать по градиенту из места образования к месту потребления. Органические молекулы, как правило, полярны. Поэтому они не могут свободно диффундировать через липидный барьер клеточных мембран. Однако двуокись углерода, кислород и другие вещества, растворимые в липидах, проходят через мембраны свободно. В обе стороны проходит вода и некоторые мелкие ионы.

КП Аяжан стр. 17 из 26





Пропуская воду, клеточные мембраны в то же время не пропускают большинство растворённых в ней веществ. Такие мембраны называют полупроницаемыми, а диффузию через такие мембраны - осмосом.

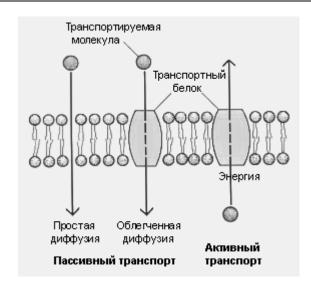
#### Эндоцитоз и экзоцитоз

Эндоцитоз и экзоцитоз - это два активных процесса, посредством которых различные материалы транспортируются через мембрану либо в клетки (эндоцитоз), либо из клеток (экзоцитоз). При эндоцитозе плазматическая мембрана образует впячивания или выросты, которые затем, отшнуровываясь, превращаются в пузырьки или вакуоли. Различают два типа эндоцитоза:

**1. Фагоцитоз** - поглощение твёрдых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами.



**Рис 8.** Макрофаг, фагоцитирующий две красные кровяные клетки


**2. Пиноцитоз** - поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Часто при этом образуются очень мелкие пузырьки (микропиноцитоз).

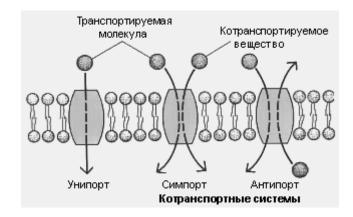
Экзоцитоз - процесс, обратный эндоцитозу. Таким способом выводятся гормоны, полисахариды, белки, жировые капли и другие продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Обе мембраны сливаются, и содержимое пузырька выводится в среду, окружающее клетку.

Молекулы проходят через мембраны благодаря трём различным процессам: простой диффузии, облегчённой диффузии, активному транспорту.

КП Аяжан стр. 18 из 26






**Простая** диффузия - пример пассивного транспорта. Его направление определяется только разностью концентраций вещества по обеим сторонам мембраны (градиентом концентрации). Путём простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах и мелкие незаряженные молекулы (например, вода).

Большинство веществ, необходимых клеткам, переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки, повидимому, образуют непрерывный белковый проход через мембрану.

Различают две основные формы транспорта с помощью переносчиков: облегчённая диффузия и активный транспорт.

**Облегчённая** диффузия обусловлена градиентом концентрации, и молекулы движутся соответственно этому градиенту. Однако если молекула заряжена, то на её транспорт влияет как градиент концентрации, так и общий электрический градиент поперёк мембраны (мембранный потенциал).

**Активный транспорт** - это перенос растворённых веществ против градиента концентрации или электрохимического градиента с использованием энергии АТФ. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении.



Некоторые транспортные белки переносят одно растворённое вещество через мембрану (унипорт).

КП Аяжан стр. 19 из 26



Другие функционируют как котранспортные системы, в которых перенос одного растворённого вещества зависит от одновременного или последовательного переноса второго вещества.

Второе вещество может транспортироваться в том же направлении (симпорт) либо в противоположном (антипорт).

#### **Na-К** насос

Одной из важнейших и наиболее изученных систем активного транспорта в клетках животных является Na-K насос. Большинство клеток животных поддерживают разные градиенты концентрации ионов натрия и калия по разные стороны плазматической мембраны: внутри клетки сохраняется низкая концентрация ионов натрия и высокая концентрация ионов калия. Энергия, необходимая для работы Na-K насоса, поставляется молекулами ATФ, образующимися при дыхании. О значении этой системы для всего организма свидетельствует тот факт, что у находящегося в покое животного более трети ATФ затрачивается на обеспечение работы этого насоса.

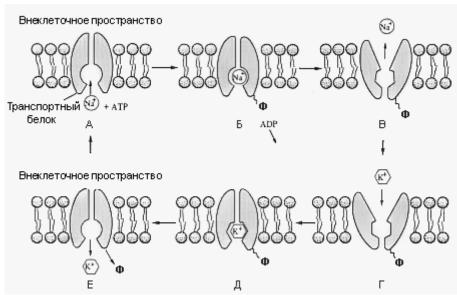



Рис 9. Модель работы Na-К насоса

- А. Ион натрия в цитоплазме соединяется с молекулой транспортного белка.
- **Б.** Реакция с участием АТФ, в результате которой фосфатная группа (P) присоединяется к белку, а АДФ высвобождается.
- **В.** Фосфорилирование индуцирует изменение конформации белка, что приводит к высвобождению ионов натрия за пределами клетки
- Г. Ион калия во внеклеточном пространстве связывается с транспортным белком (Д), который в этой форме более приспособлен для соединения с ионами калия, чем с ионами натрия.
- **Е.** Фосфатная группа отщепляется от белка, вызывая восстановление первоначальной формы, а ион калия высвобождается в цитоплазму. Транспортный белок теперь готов к выносу другого иона натрия из клетки.

#### Типы обменных процессов

Совокупность всех реакций биосинтеза принято называть ассимиляцией (лат. ассимиляцию – уподобление), или пластическим обменом. В се реакции пластического обмена идут с поглощением энергии.

КП Аяжан стр. 20 из 26



Противоположный процесс – распад и окисление клеткой органических соединений – носит название диссимиляции. (лат. диссимиляцию-делать неподобным).или энергетического обмена. Все реакции этого процесса идут с выделением энергии.

**АТФ** как источник клеточной энергии. Для того чтобы осуществлять и выполнять определенные функции клетка нуждается в энергии. Энергия, приобретаемая клеткой сохраняется главным образом в виде молекул аденозитрифосфата —  $AT\Phi$  (аденозитрифосфорная кислота). Молекула  $AT\Phi$  является нуклеотидом, так как состоит из азотистого основания — аделина, сахара, рибозы и трех фосфатных групп (остатки фосфорной кислоты).

 $AT\Phi$  - это макроэргическое соединение, поскольку в двух фосфатных связях накапливается большое количество энергии. Химические связи которыми соединены молекулы фосфорной кислоты, неустойчивы. Под действием фермента  $AT\Phi$  – в ходе гидролиза (присоединения воды) один богатый энергией остаток фосфорной кислоты отщепляется от молекулы  $AT\Phi$  с образованием аденозиндифосфата  $AT\Phi$  и выделением энергии в количестве около 40 кДж/моль. Указанный процесс называется дефосфорилированием.

Обратное явление переход АДФ в АТФ путем присоединения неорганического фосфата — фосфорилированием. Накопление и концентрация энергии в макроэнергетических фосфатных связях при образовании АТФ происходит в ходе энергетического обмена, а также во время фотосинтеза.

### Образование АТФ в процессе энергетического обмена.

Энергетическим обменом или диссимиляцией называются процессы распада и окисления клеткой органических соединений. Внутриклеточный этап энергетического обмена подразделяется на два периода.

**Первый период безкислородный (анаэробный).** Глюкоза поступает из крови в цитоплазму клеток, где под действием ферментов преобразуется в две молекулы молочной кислоты. В реакции участвуют АДФ и  $H_2$   $PO_4$ .

$$C_6H_2~O_6+2H_3~PO_4+2A$$
Д $\Phi \rightarrow C~_3H_6~O_3+2AT\Phi+2H_2O$ 

Образование двух молекул  $AT\Phi$  из одной молекулы глюкозы в целом мало эффективно. Количество выделяемой энергии невелико 200 кДж. Основные процессы связанные с накоплением энергии, происходит во втором периоде.

Второй период – кислородный (аэробный) называют окислительным фосфолирированием (клеточное дыхание). Входе его наблюдается полное кислородное расщепление молочной кислоты до двуокиси углерода СО<sub>2</sub>. Происходит освобождение атомов водорода Н ( водород выделяется из углеводов в результате прохождения ими сложного ряда химических превращений, называемых циклом Кребса).

Реакция протекает с участием АДФ и Н<sub>3</sub> РО<sub>4.</sub>

$$2C_2 H_6 O_3 + 6O + 36AД\Phi + 36HPO \rightarrow 6CO + 36AT\Phi + 42HO$$

При этом выделяется большое колличество энергии 2600 кДж. Окислительное фосфорирование совершается в митохондриях клеток. Атомы водорода H (электроны и протоны) переносятся на систему ферментов в митохондриальной мембране. Здесь они окисляются, то есть теряют электроны: H  $_2$  —  $_2$  —  $_2$  H $^+$ . Образуются свободные электроны е и ионы водорода H  $^+$  (протоны). В ходе дыхания элетктроны несколько раз пересекают мембрану вынося протоны H $^+$  в наружную поверхность. Количество положительно заряженных протонов там резко возрастает. Возникает градиент концентрации протонов и электрический потенциал. Благодаря ему протоны стремятся вернутся назад во внутрь.

#### 1.4. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

#### 1.4.1. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ СТУДЕНТОВ

Клетка как открытая система. Ассимиляция, диссимиляция. Клеточные мембраны. Их структура и функции. Принцип компартментации Рецепторы клеток. Транспорт веществ через плазмолему. Организация потоков веществ и энергии в клетке. Этапы энергетического обмена.

КП Аяжан стр. 21 из 26



Энергетическое обеспечение клеток АТФ. Разделение энергии. Этапы энергетического обмена. Энергетическое обеспечение клеток АТФ, Разделение энергии.

# 1.4.2. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ ПО ТЕСТАМ

- 1. Необходимейшим веществом в клетке, участвующим почти во всех химических реакциях является:
- А. Полинуклеотид. Б. Полисахарид. В. Полипептид. Г. Вода.
  - 2. Какая структура клетки образует своеобразный барьер, через тонкие каналы этой части клетки осуществялется транспорт веществ в клетку и обратно?
- А. Эндоплазматическая сеть. Б. Цитоскелет В. Плазматическая мембрана. Г. Пластиды
  - 3. Вода основа жизни:
- А. Она может находиться в трех состояниях (жидком, твердом и газообразном). Б. В клетках зародыша ее больше 90%. В. Является растворителем, обеспечивающим как приток веществ в клетку так и удаление из нее продуктов обмена. Г. Охлаждает поверхность при испарении.
  - 4. Биоэлементами называют химические элементы:
- А. входящие в состав живой и не живой природы
- Б. Участвующие в жизнедеятельности клетки
- В. Входящие в состав неорганических молекул
- Г. Являющиеся главным компонентом всех органических соединений клетки
  - 5. Понятие «гомеостаз» характеризует:
- А. Состояние динамического равновесия природной системы, поддерживаемое деятельностью регуляторных систем.
- Б. Процесс разрушения клеток путем их растворения.
- В. Общее снижение жизнеспособности организма.
- Г. Процесс расщепления углеводов в отсутствии кислорода.
  - 6. Метаболизм складывается из двух взаимосвязанных и противоположно направленных процессов:
- А. Жизни и смерти, Б. Синтеза и распада. В. возбуждения и торможения.
- Г. Поглощения кислорода и выделение углекислого газа.

# 1.4.3. ПРОВЕДЕНИЕ ЗАКЛЮЧИТЕЛЬНОГО ТЕСТОВОГО КОНТРОЛЯ

- 1. На практическом занятии по биологии клеток студенты изучали плазматическую мембрану. Преподаватель спросил, как в клетку попадают макромолекулы, которые связываются со специфическими рецепторами на поверхности клетки?
- А. через ионные каналы благодаря
- В. эндоцитозу
- С. с помощью белков переносщиков которые перемещаются наподобие вращающейся двери
- Д. путем пассивного транпорта
- Е. благодаря работе натрий калиевого насоса.

- 2. При электронномикроскопичес-ком изучении клетки выявлена трехслойная ультраструктура, которая ограничивает цитоплазму. Внешняя поверхность ее представлена гликокаликсом, внутрення лабильными белками. Что представляет собой эта
- А. цитоскелет
- В. оболочка ядра
- С. плазмолемма
- Д. ЭПС гладкая
- Е. ЭПС гранулярная.

ультраструктура?

КП Аяжан стр. 22 из 26



| 3. Вследствие полного        | 4. С помощью электронной    |
|------------------------------|-----------------------------|
| (анаэробного и аэробного)    | микроскопии обнаружено, что |
| распада одного моля глюкозы  | поверхность большинства     |
| в клетках человека           | клеток образует             |
| высвободилась энергия. Часть | многочисленные выросты      |
| ее рассеялась, а часть была  | цитоплазмы. Какой процесс   |
| аккумулирована в виде:       | активно происходит в этих   |
| А. 2 молей АДФ А             | клетках?                    |
| В. 2 молей АТФ               | А. биосинтез белка          |
| С. 36 молей                  | В. фагоцитоз                |
| Д. 38 молей                  | С. биологическое окисление  |
| Е. 40 молей                  | Д. диффузия                 |
|                              | Е. Синтез АТФ.              |

#### ЛИТЕРАТУРА: основная (1), дополнительная (2).

- 1.1. В.П. Пишак Биология медицинская Винница 2004
- 1.3. Королев В.А. Лекции по медицинской биологии. Киев: Вища школа, 1993.
- 1.5. Пехов А.П. Биология с общей генетикой. М.: Медицина, 1993.
- 2.1. Королев В.А., Ромашова М.Ф. Биология живой клетки. Симферополь, 1999.

# Урок 4 МОРФОЛОГИЯ ХРОМОСОМ. КАРИОТИП ЧЕЛОВЕКА МЕСТО И ВРЕМЯ ЗАНЯТИЯ-КАБИНЕТ БИОЛОГИИ ОСНАЩЕНИЕ ЗАНЯТИЯ: таблицы, схемы.

- **1.1.** Значение темы: С помощью хромосом осуществляется передача наследственной информации дочерним клеткам и последующим поколениям организмов. Изменения в структуре хромосомного набора приводят к тяжелым заболеваниям. Врачу необходимо владеть методикой кариотипиро-вания, т. к. этот метод используется для диагностики хромосомных болезней.
- **1.2. Цели занятия: Общая** наследственного материала **Рис. 10. Метафазная** хромосома. знать принципы организации эукариот.
  - 1.3. Конкретные цели. Уметь
- 1.3.1. Охарактеризовать морфологию метафазной хромосомы, ее микроскопическую и субмикроскопическую структуру.

1.3.2. Распознавать хромосомы разных групп в кариотипе человека.

#### ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

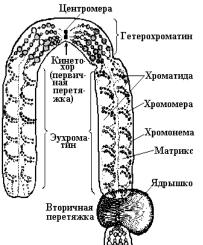
Американский генетик Томас Морган в 1911 г. сформулировал хромосомную теорию наследственности, в которой впервые показал, что передача признаков по наследству связана с хромосомами.

 Хромосомы
 —
 это

 структурные
 элементы
 клеточного

 предназначенные
 для
 хранения

 правильного
 ее
 распределения
 в


 По форме
 хромосомы
 бывают
 в

 зависимости
 от
 расположения

зависимости от расположения центромеры, различают три типа субметацентрические и

1. В метацентрических посередине.

2. **Для субметацентрических** - плечей разной длины.



самовоспроизводящиеся ядра, содержащие гены, наследственной информации и ходе митоза (рис. 5). виде палочек, нитей, петель. В первичной перетяжки — хромосом: метацентрические, акроцентрические (рис. 6, A).

центромера расположена

характерно наличие

КП Аяжан стр. 23 из 26



#### 3. Акроцентрические — центромера находится на конце хромосомы.

Концевые участки хромосомы называют теломерами. Особенность их состоит в том, что они не способны к соединению с другими участками хромосом.

Основными химическими компонентами хромосом эукариот являются ДНК, белки и небольшое менять свою структуру и длину на протяжении количество РНК. Хромосомы способны клеточного цикла. Так, в период интерфазы они находятся в деконденсированном состоянии и

метацентрические выполняют функции репликации и транскрипции. Максимальная конденсация

хромосом характерна для делящейся клетки, особенно в метафазе. В период

плечи хромосом деления клетки хромосомы выполняют функцию перемещения и распределения наследственной информации. Субметац<u>ен</u>три Каждому виду характерен кариотип, т.е. определенное постоянное 🚺 число, форма и размеры хромосом. В диплоидном наборе хромосом Акропентрические соматической клетки (его обозначают 2n) следует различать

**гомоло**гичные хромосомы, которые имеют одинаковую морфологию, но происходят из разных геномов: одна от материнской гаметы, другая отцовской. Если пары гомологичных хромосом расположить в порядке убывания их размеров, то получится так

XX 20 21

называемая идиограмма (рис. 6 Рис. 11. Типы (А) и идиограмма хромосом человека (Б). Б).. У человека кариотип состоит из 46 хромосом. Причем различают 44 аутосомы и 2 половые хромосомы, которые отличаются у мужчин (XУ) и у женщин (XX). Следовательно, кариотип мужского организма — 46,XУ, женского — 46, XX.

цитогенетичеокий метод, с помощью которого В генетике человека широко используют изучают строение отдельных хромосом, а также особенности набора хромосом клеток человека в норме и патологии. По половому хроматину интерфазных ядер можно судить о состоянии половых хромосом, что позволяет провести экспресс-диагностику некоторых наследственных болезней.

#### 1.4. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

#### 1.4.1. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ ПО ТЕСТАМ ИСХОДНОГО КОНТРОЛЯ

1. Назовите вещества, входящие в состав хромосом: б) углеводы, в) нуклеиновые кислоты, г) жиры.

2. Где располагается центромера у акроцентрических хромосом:

а) посередине хроматиды. б) несколько сдвинута к одному

концу, в) у одного конца, г) в центре 3. Какое число хромосом в кариотипе женщины: а) 23, б) 69, в) 46. г) 92.

4. Какое значение имеет уменьшение числа хромосом в гаметах:

а) в зиготу поступают хромосомы отца и матери,

б) в ряду поколений сохраняется одно и тоже число хромосом, в) обеспечивает разнообразие форм в природе,

г) обеспечивает постоянство признаков в процессе филогенеза.

5. Какие хромосомы называются политенными:

б) две хроматиды, а)имеющие одну хроматиду,

в) три хроматиды, г) много хроматид.

6. Из перечисленных периодов клеточного цикла выберите те, которые относятся к интерфазе: S, 6) G 1, в) G 2, г) M.

#### ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ, КОТОРЫЕ НЕОБХОДИМО УСВОИТЬ 1.4.2. ДЛЯ ДОСТИЖЕНИЯ ЦЕЛЕЙ ЗАНЯТИЯ

КП Аяжан стр. 24 из 26



- а) структура ядра в интер- и метафазе,
- б) хромосомы, их строение и химический состав,
- в) понятие о кариотипе и идиограмме,
- г) классификация хромосом человека,
- д) эухроматин, гетерохроматин и половой хроматин,
- е) методика изучения кариотипа человека.

#### 1.4.3. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ:

а) рассмотреть при большом увеличении микроскопа и зарисовать микропрепарат "Политенные хромосомы дрозофилы ".

б) рассмотреть демонстрационный микропрепарат " Хромосомы человека из культуры лейкоцитов". Зарисовать хромосомы на стадии метафазы,

в) составить идиограмму хромосом. Для этого используются фотографии: хромосомы в метафазе из культуры лейкоцитов человека. Хромосомы вырезают, составляют пары и располагают все хромосомы по группам, согласно Денверской классификации,

г) приготовить временный микропрепарат "Х-половой хроматин в клетках слизистой оболочки полости рта". Изучить препарат с помощью иммерсионного объектива, зарисовать.

## 1.4.4. РЕШЕНИЕ ЦЕЛЕВЫХ ОБУЧАЮЩИХ ЗАДАЧ:

<u>Задача 1.</u> Некоторые клетки больного человека имеют нормальный кариотип; другие - 47 или 45 хромосом. Укажите названия и возможные механизмы этого явления. <u>Задача 2.</u> При исследовании буккального эпителия, взятого у мужчины с нормальным кариотипом, в одной из клеток был обнаружен X-хроматин. Как это можно объяснить ? <u>Задача 3.</u> Может ли нормальная стволовая клетка костного мозга человека иметь 92 хромосомы ?

#### 1.4.5. ПРОВЕДЕНИЕ ЗАКЛЮЧИТЕЛЬНОГО ТЕСТОВОГО КОНТРОЛЯ:

- 1. Укажите основные компоненты интерфазного ядра:
- а) ядерная мембрана, б) ядрышки,
  - в)хроматин,
- г) клеточный центр, д) нуклеоплазма, е) диктиосомы.
  - 2. Какое значение имеет эухроматин:
- а) передает информацию, направляющую синтез белка,
- б) участвует в процессах клеточного метаболизма,
- в) тормозит синтез белка в клетке.
  - 3. Укажите, является ли гетерохроматин генетически актиным:
- а) да, б) нет.
  - 4. Что такое кариотип?
- а) совокупность хромосом соматической клетки организма, характерная для данного вида; б) совокупность половых хромосом, характерная для данного вида;
- в) наличие хроматина в клеточном ядре.
  - 5. Какая стадия митоза используется для изучения кариотипа?
- а) профаза, б) метафаза, в) анафаза, г) телофаза.
- 6. С помощью какого метода можно идентифицировать наличие в ядре У-половой хромосомы?
- а) световая микроскопия,
- б)электронная микроскопия,
- в) люминисцентная микроскопия.
  - 7. С чем связано наличие в интерфазном ядре женщин одной глыбки полового хроматина?
- а) у женщин две Х-хромосомы, одна находится в активном состоянии, а вторая в гетерохроматиизированном,
- б) у женщин половые хромосомы одинаковые,
- в) т.к. у женщин в ядре хроматина больше.
  - 8. Какое действие оказывает алкалоид колхицин на митоз?

а) тормозит метафазу,

КП Аяжан стр. 25 из 26



- б) удлиняет анафазу,
- в) останавливает процесс кариокинеза.
  - 9. Какой механизм действия колхицина?
- а) усиливает процесс расхождения центриолей к полюсам клетки,
- б) подавляет образование микротрубочек веретена деления.
- в) препятствует спирализации хромосом.
  - 10. Какие клетки человека чаще всего используют для изучения кариотипа?
- а) эритроциты, б) тромбоциты, в) лейкоциты.
  - 11. Какое значение имеют теломеры?
- а) способствуют удвоению хромосом,
- б) препятствуют соединению хромосом между собой,
- в) участвуют в процессе синтеза белков.
  - 12. Что такое идиограмма?
- а) схема, на которой хромосомы располагаются в ряд по мере убывания их длины,
- б) схема, на которой хромосомы идентифицируются по расположению центромеры.

#### задача

- 1. При обследовании 2-х месячного мальчика педиатр обратил внимание, что плач ребенка похож на кошачье мяуканье. Кроме того, у ребенка отмечались микроцефалия и порок сердца. Его кариотип 46, ху, 5р-. В какую стадию митоза был исследован кариотип?
  - А. Интерфаза,
  - В. Профаза,
  - С. Метафаза,
  - D. Анафаза,
  - Е. Телофаза.
- 2. Известно, что в интерфазных ядрах мужских соматических клеток в норме содержится не более 0-5 % глыбок полового хроматина, а в женских 60-70%. С какой целью в практической медицине используют определение глыбок полового хроматина?
  - А. Для изучения структуры Х-половой хромосомы,
  - В. Для экспресс-диагностики пола человека,
  - С. Для изучения структуры У-половой хромосомы,
  - D. Для определения кариотипа,
  - Е. Для изучения структуры аутосом

# 1.5. ПОДВЕДЕНИЕ ИТОГОВ ЗАНЯТИЯ преподавателем и проверка правильности выполнения работы каждым студентом

#### 1.6. ЛИТЕРАТУРА ОСНОВНАЯ (I) И ДОПОЛНИТЕЛЬНАЯ (II):

- (I) 1. Биология (под ред. Ярыгина В.Н.), М., Медицина, 1999.
  - 2.Слюсарев А.А., Жукова С.Н. Биология, Вища школа, 1987, с. 85-97.
  - 3. Пехов А.П. Биология с общей генетикой. Медицина, 1993,
- (II) 4. Альюин В. Гены, Мир, 1987.
  - 5. Георгиев Г. П. Гены высших организмов и их экспрессия, Мир, 1987.
  - 6. Инге-Вечтамов А.В., Введение в молекулярную генетику, 1987.
  - 7. Щипков В.П. Кривошеина Г.Н. «Общая медицинская генетика».

КП Аяжан стр. 26 из 26